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Abstract-A method is presented in which the axial viscoelastic response of a simple strand may
be predicted given the stress relaxation of the filament's construction material. This approach utilizes
the Schapery collocation method to determine the coefficients for the elements of a Wiechert model.
The geometric effects of the strand are then combined with the analytical solution for the Wiechert
model to develop a system of convolution integrals which satisfy the equilibrium and boundary
conditions for the strand construction. The solutions for these integrals are approximated numeri
cally using a modified Newton's iterative method combined with a numerical technique developed
by Lee and Rogers.

INTRODUCTION

Multiple filament cords composed of twisted polymer filaments are utilized in many of
today's manufactured goods. They are the main components in most textile products and
the reinforcing components in many composite structures (i.e. tires, biomedical devices,
etc.). The advantage of the multiple filament cord over a solid filament with an equivalent
radius is the lower bending stiffness while maintaining a high axial stiffness.

Since the simple strand (see Fig. 1) is a fundamental building component of many
cords with complex cross-sections, an understanding of its mechanical response is necessary
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Section A-A

Fig. I. Side view and cross-section of an undeformed simple strand,
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if one is to understand the response of cords with more complex cross-sections. The elastic
mechanical response of a simple strand has been analysed by Costello (1990) where he has
developed a set of constitutive equations which describe the strand's elastic response to a
variety of static and dynamic loading conditions. Conway and Costello (1991) further
analysed the axial mechanical response ofa simple strand. They demonstrated, analytically,
that a significant reduction in contact stresses between strand wires could be achieved by a
slight modification of the wire's cross-sectional geometry.

As is evident from the literature, an extensive development of the elastic simple strand
model presently exists. The viscoelastic model of twisted filament cords which incorporate
the time-dependent material behavior for polymer filaments has also been developed (Huang,
1978a, b). This paper presents a theory capable of predicting, within limits, the mechanical
response of a simple strand composed of a polymeric material. This is accomplished by
using a method similar to that described by Conway and Costello (1992). First, a viscoelastic
model that incorporates relatively realistic material properties is generated. The model is,
then, integrated into the constitutive equations for a simple strand (Costello, 1990). Finally,
the mechanical response of the strand is evaluated numerically.

THEORY

Most polymer strand applications require that the strand should not retain any residual
strains after a period of time subsequent to the removal of the applied load. For this reason,
the analytical model chosen to describe the strand material's response to loading must
represent a viscoelastic solid. If it is assumed that the material behaves in a linearly viscoelastic
manner, a number of analytical models are available to describe the material's mechanical
response. This assumption is valid for relatively small strains and will be used throughout
this work (Bland, 1960). Further, it is assumed that the material is slightly compressible
and functions in an isothermal environment, thus any changes in the mechanical properties
due to a temperature change are not considered.

The authors of this paper have chosen to use a modified generalized Maxwell model,
known as a Wiechert model (see Fig. 2), because of its relative convenience in modeling
the stress relaxation for a given material resulting from an imposed strain. Since linear
viscoelasticity is assumed for the material property, the response to loading for each element
in the Wiechert model is linear and is described by a constant coefficient. The values for
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Fig. 2. Wiechert model.
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these coefficients are calculated from the experimental stress relaxation data by using the
Schapery Collocation method.

The Schapery Collocation method models each of the material's major transitions as
a single relaxation time process (see Fig. 3). Thus the values for the stress-strain relationship

(I)

can be determined where Eo is the rubbery modulus, Ej is the modulus for each successive
transition, Tj is the relaxation time for the corresponding transition and eo is the imposed
constant strain.

Once the strand's material has been mechanically characterized, the geometric con
straints for the strand must be determined. The longitudinal and lateral cross-section views
of an undeformed simple strand are illustrated in Fig. I. The core filament has a radius,
R" and each of the six outer filaments has a radius, R 2 • The subscripts refer to the layer of
filaments, with the first layer being the core filament.

From the geometric description of an outer filament, it is evident that the minor ellipse
axis length is R 2 • Thus, the helix radius for the undeformed strand is

(2)

and the helix radius for the deformed strand is

(3)

The initial helix angle, !X2, is determined from the initial pitch, P2' of an outer filament,
or

(4)

In a purely elastic material, the time necessary for molecular rearrangement is virtually
infinite (Tschoegl, 1989). A comparison of an elastic strand's initial configuration and final
configuration can, therefore, be used to determine the strand's mechanical response to
loading or deformation. If a load is applied to a polymer strand, however, the helix angle,
!X2(t), each filament radius, R,(t) and R2(t), and helix radius, '2(1), all vary as a function of
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Fig. 3. Theoretical stress relaxation response.
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time. Thus a description ofa viscoelastic solid's final configuration is not applicable. Instead,
a description of the strand's configuration at some time, 1 > 0, is necessary.

Conway and CostelIo (1992) have shown that for a given length of strand, it will have
Qo turns in the undefonned state and Q turns after defonnation at some time 1 > O. The
undefonned length of the strand is

(5)

and the defonned length at 1 > 0 is

(6)

The corresponding undefonned length of a filament is

(7)

and the corresponding deformed length is

(8)

The axial strain in the strand is thus,

(9)

and the axial strain in a filament is

( 10)

From Poisson's effect,

(II)

where v is Poisson's ratio and is considered to be constant for relatively smalI defonnations.
A combination ofeqns (9), (10) and (II) results in

The angle of twist per unit length for the strand is

Tc(t) = 2n(Q-Qo) =_~ __ (Q _I).
L o '2 tan ~2 Qo

By combining eqns (10), (II) and (13), the twist per unit length becomes

(12)

(13)

(14)

Equation (14) shows that if the strand ends are allowed to rotate, the strain will be coupled
with a twist. If, however, the ends of the strand are not allowed to rotate, such that Tc(l) = 0,
then an additional constrained condition exists. From eqn (14), this constraint is
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(15)

By incorporating eqns (2) and (15), a relationship between the helix angle, (X2(t), and
the outer filament radius, R2(t), can be shown to be

(16)

The general design of a simple strand minimizes the contact stresses between the outer
filaments by requiring the outer radius, R h to be less than the core radius, R I • The reduction
allows the outer filament to only have contact with the core, creating a line load between
the outer filament and the core. This reduction in radius does not have to be very large,
usually on the order of 3% for a polymer with a Poisson's ratio near 1. This now allows a
relationship between R,(t) and Rit) to be determined.

Once the geometric constraints for the simple strand are determined, the equilibrium
equations can be developed. Before the viscoelastic material properties are incorporated
into this configuration, however, a review of the elastic equilibrium equations for a simple
strand are necessary.

Costello (1990) has shown that for an axially loaded, simple strand, the outer filaments
deform from one helical configuration to another. Thus, only two equations must be
satisfied for each wire to be in equilibrium. These are:

(17)

and

(18)

where the subscript 2, again, refers to the outer layer of filaments, N2 is the binormal
component of the shear load, '2 is the twist per unit length of the wire's centerline, T 2 is
the wire's axial load, K; is the binormal component of curvature, X 2 is the resultant line
load per unit length of the wire's centerline, G'z is the binormal component of the bending
moment and Hz is the twisting moment. Further, Costello (1990) showed that

(19)

and

(20)

where R 2 is the outer wire radius after loading, E is the wire material's elastic modulus, 1i2
is the helix angle of the loaded wire and '2 is the helix radius of the loaded strand. Also in
the elastic case, the axial load may be determined from

(21)

Equations (2), (19) and (20) can be used to determine an expression for N; in terms
of liz and R2 given v, (X2, (R 2)o and E. Subsequently, this equation for N'2 combined with
eqns (2) and (21) results in an expression for X z in terms ofti 2 and R 2 •

The total force, F2 , and moment, M 2 , for the outer layer of wires are
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(22)

(23)

The total force, Fl> in the core wire is calculated similarly to the axial load in an outer wire
where

nRr [ R 1 ]
F1 = --v- E 1- (R1)o . (24)

The total moment, M h in the core wire is equal to zero as a result of the no end rotation
boundary condition imposed on the simple strand.

Finally, the total axial load, FT , and the total moment, M T , in the simple strand are

(25)

and

(26)

Returning now to the time dependent behavior of the polymer strand, according to
the correspondence principle of viscoelasticity, the tensile relaxation modulus can be treated
as an integral operation. The correspondence principle allows Hooke's law to be used in
the Laplace transform space and is represented as

ii(p) = pE(p)e(p), (27)

where p is the transform variable. Inversion of this transform yields an expression for the
Boltzmann superposition integral (Tschoegl, 1990). This general solution to the inverse
transform of eqn (27) is

(28)

Now, instead of varying the modulus and the strain, we now hold the strain constant,
as in stress relaxation, and allow another parameter of the design to vary. The convolution
integral would have the general form

If the differential term is denoted as

df= j,

then eqn (29) can be represented as

(E* df)(t).

(29)

(30)

(31)

The time-dependent relationships for the binormal component ofthe bending moment,
G;(t), and the twisting moment, Hz(t), for an outer filament can now be determined. These
components of the moment in an outer filament become
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and

By incorporating eqns (18), (32) and (33), the binormal component of shear, N;(t), is

559

(32)

(33)

N' t = nRi(t) cos ctz(t) {[cos ctz(t)] (E *d[sin ct zcos ct z]) (t)
z( ) 4rz(t) 1+v rz

- sin ctz(t) ( E *d[co;:ct
z]}t)}. (34)

The axial load in an outer filament can be determined from eqn (21) to be

(35)

By combining eqns (17), (34) and (35), the contact load per unit length for an outer filament
is

(36)

The total force, Fz(t), and moment, Mz(t), for the outer layer of filaments are

(37)

and

Mz(t) = 6[Hz(t) sin ctz(t) +G;(t) cos ctz(t)

+ T 2(t)rz(t) cos ctz(t) - N;(t)r2(t) sin ctz(t)]. (38)

The total force, F1(t), in the core filament is calculated similarly to the axial load in an
outer filament where

(39)

The total moment, M 1(t), in the core filament is, again, equal to zero as a result of the no
end rotation boundary condition imposed on the simple strand.

Finally, the total axial load, F(t), and the total moment, M(t), in the simple strand are

(40)

and



560 T. A. CONWAY and G. A. COSTELLO

(41)

With eqns (28)-(37), the mathematical tools are now available for the development of
a solution technique for the response of a simple strand given a specific loading criterion.

GENERAL METHOD OF SOLUTION

Now, the parameters used to calculate the various aspects of the simple strand response
must be non-dimensionalized. In the subsequent analysis, R 2 and R 2(t) will be evaluated in
terms of R 1 and RI(t). Also, the tensile modulus at time, t = 0+, is E(O+) and is denoted
by Eo. Thus, all of the variables can be non-dimensionalized in terms of Eo and R I • This
results in the following variables where the bar indicates a dimensionless quantity:

E = E(t) R (t) = R I(t) R (t) = R2(t)
Eo' I R I ' 2 R

I
'

-, G'2(t) - H 2(t) - F 1(t)
G 2(t) = E R3' H 2(t) = E R3' F I(t) = E R2'

on 1 on I on 1

_ F 2(t) - M 2(t) - F(t) - M(t)
F 2(t) = E R 2' M 2(t) = E R 3' F(t) = E R2' M(t) = E R3' (42)

on I on I on I on 1

For specific values of v, F(t) and E(t), the viscoelastic deformation of a simple strand is
governed by the following equations:

(43)

(44)

-, _ Ri(t) (E- d[cos
2Ct2J)( )G 2(t)- * _ t,

4 r2

- = Ri(t) (- *d [sin Ct2 cos Ct2J) (t)
H 2(t) 4(1 +v) E '2 '

(47)

(48)
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(49)

M(t) = 6[112(t) sin (X2(t) + (;'2(t) cos (X2(t) + T2(t)r2(t) cos (X2(t)

- N'2(t)r2(t) sin (X2(t)J. (50)

When the external force, F(t), and a boundary condition such as no end rotation are applied
at t = 0, the instantaneous response at t = 0+ is elastic. The governing equations for this
elastic response are:

(51 )

(52)

In order to find the correct value for R(O+) in eqns (51)-(53), an iterative method must
be used to satisfy eqn (54). As stated previously, the analysis of a simple strand is limited
to a no end rotation boundary condition. Thus, a modified Newton's iterative method is
used. This method uses three values of R(O+). These are R;(O+), R;(O+) -~ and R;(O+)+~,

where ~ is a small number. From these values the corresponding terms <PI' <P2 and <P3 can
be calculated. The derivative d<P/dR at R(O~) = R;(O+) can be approximated by using a
central difference equation, such as

(55)

Now, Newton's iterative formula can be used to determine a new value for R(O+) which is

(56)

This iteration technique is used until <P 1(0+) ~ O. Since this technique is used on a
computer, a minimum value for <P I (0+), such as 1 x 10- 9, must be set. Once this value is
arrived at, the corresponding value for R(O+) is used to determine the loads and moments
at t = 0+.

Once the filaments in a strand are deformed into a new helical configuration by this
elastic response, they continue to vary with respect to loading and deformation over time,
depending on the viscoelastic properties of the strand construction material. This time
dependent behavior can be closely approximated by using a numerical integration technique
developed by Lee and Rogers (1963) which evaluates the hereditary integral introduced in
eqn (29). This technique uses the equation
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(57)

SN = E(tNHf(O+) - fo] - HI +E(tN - tN- \)]f(tN- ,)

1 N- 2 _ _

x 2: I {[E(tN- t;+ ,) +E(tN - t;)][f(tH I) - f(t;)]}. (58)
;=0

In this numerical scheme the time, t, is divided into N intervals where to is the time of
the initial elastic response and tN is the time when the viscoelastic response is to be evaluated.
Also, f is the function that is differentiated with respect to time in eqns (32)-(36). At each
step in the time interval, a value for the convolution integral is determined from this method.
This value is used to determine values for N~(t) and T2(t) from eqns (34) and (35). N~(t)
and T2(t) are then placed in eqn (49). If ¢ is not less than some prescribed value, the
modified Newton's iterative method is used to evaluate R.;(t) which will satisfy the conditions
for ¢. Once a value for R;(t) is determined, ocit) can be calculated from eqn (16). This can
then be used to determine F1(t), T2(t), N~(t), X2(t), G~(t), H2(t), M2(t) and G,(t) from
eqns (43)-(48), (50) and (12), for the specific time interval from which R;(t) was evaluated.
This iterative technique must then be used at each time interval in order to describe,
satisfactorily, the viscoelastic response for the strand.

STRAND RESPONSE FOR A PARTICULAR VISCOELASTIC MATERIAL

In order to determine the time-dependent response of a polymer strand, a viscoelastic
material must be chosen. This material must have a linear stress-strain relationship in the
Laplace transform space since the correspondence principle in viscoelasticity is used in the
subsequent analysis. A material which meets this criterion is polymethyl methacrylate
(PMMA). The modulus relaxation is shown in Fig. 4. Also in this figure is the corresponding
theoretical curve determined from the Schapery collocation method. As discussed
previously, the Wiechert model is used in the prediction of this theoretical curve. For
good correlation between the experimental data for PMMA and the theoretical results, 10
Maxwell elements are required along with a spring in parallel. The modulus relaxation
equation is thus

E(t) = 2.24 x 106 + 1.60 x 109 eH10 01)-7.01 x 108 e(-I/Ol)+9.65x 108 e(-I)

+4.36 x 108 e( -1/1 0) +4.12 X 108 e( -1/1 00) + 2.47 X 108 e( -1/1 000) +4.98 X 107 e( -1/10000)

+ 1.27 X 107 e( -1/100000) + 5.85 x 106 e( -1/1000000) + 1.94 X 106 e( -1/100000000), (59)

where at t > 109 hours, E(t) - 106
.
35 N m- 2

•

Stress Relaxation for PMMA
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Fig. 4. Stress relaxation for polymethyl methacrylate (Lee and Rogers, 1963).
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Creep Respon.e for Simple Strand of PMMA
Strand Radiu. Equals Cylinder Radiu.
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Fig. 5. Creep response for simple strand of PMMA.
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Fig. 6. Change in helix angle of outer filament.
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Fig. 7. Reduction of core filament radius.
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0.97

Reduction of Filament Radius for PMMA
Outer Filament of Simple Strand
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Fig. 8. Reduction of outcr filament radius.
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Fig. 9. Change in helix radius.
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Fig. 10. Reduction of axial load in core filament.
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Reduction in Axial Load in Filament
Outer Filament of Simple Strand
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Fig. 11. Reduction of axial load in outer filament.

Reduction of Shear Load in Filament
Outer Filament of Simple Strand

5.6

5.1 l.---I._..I-_.L---L_..I-_'----L_..J..._'--...I
o 10 20 30 40 SO 60 70 80 90 100

Time(hours)

Fig. 12. Reduction of shear load in outer filament.
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Fig. 13. Reduction of bending moment in outer filament.

c
'i i-52

eZ -53
0--·54
e i: .55
011"
.5 ~ ·56
"g:: .57., ....
= ·58

.59
-60 L...---'-_...L... '---'-_...L...--l_-,-_..r.....--L_-'

o



566 T. A. CONWAY and G. A. COSTELLO

Change of Twisting Moment in Filament
Outer Filament of Simple Strand
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Fig. 14. Reduction of twisting moment in outer filament.
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Outer Filament of Simple Strand

-90

~ ';;;' -91

; ~ ·92

] ~ ·93
..., Z ·94.. ~
o ...95

~ fi ·96

E5 ·97
8;;: ·98

-99
-I 00 '___'_~'___'____''___'__'___'____''--.....1---l

o 10 20 30 40 50 60 70 80 90 100
Time(hours)

Fig. 15. Reduclion of contact load between core and outer filaments.

Once the modulus relaxation is closely approximated numerically, the creep response
for a solid cylindrical rod and a simple strand with equal diameters can be computed. Figure
5 shows this comparison were both the rod and the strand have an overall, initial diameter
of 5.88 em, a Poisson's ratio of 0.45 and a total axial load of 2 x 104 N. The outer layer of
filaments for the simple strand have a helix angle of 75° and a radius equal to 97% of the
core radius. This difference in radii ensures that during deformation the resultant contact
loading is not influenced by outer filaments significantly touching each other. The no end
rotation boundary condition is imposed on the strand. The instantaneous jump in strain at
t = 0+ is, again, caused by the initial elastic response of the material, as described in eqns
(51)-(53). Both strains asymptotically approach an equilibrium value corresponding to the
delayed time modulus for PMMA of 10635 N m- 2, shown in Fig. 4.

The time-dependent geometric relationships in the simple strand are shown in Figs 6
9. Figures 10-12 show the change in axial loading in the core filament and the change in
axial and shear loading in an outer filament. It can be seen that the core filament carries
more of the axial load than each of the outer filaments, however, the six outer filaments
carry a total of 84% of the axial load in the simple strand. Note, also, that the reduction in
axial load for the core and outer filament are almost identical. The large reduction in the
shear load in Fig. 12 is caused by the other filaments tending to straighten out thus reducing
the shear component of the load.
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The bending and twisting components of the moment imposed on the outer filaments
by the no end rotation boundary condition are shown in Figs 13 and 14. Note that this
same boundary condition prevents a twisting moment from being imposed on the core
filament. The reduction in the bending moment is much greater than for the twisting
moment because, as mentioned several times, the outer filaments tend to straighten out
over time, reducing the bending component of the total moment.

Since the core filament is slightly larger than the outer filaments, the resultant contact
load for each outer filament is between itself and the core filament in the direction of the
central axis of the helix radius. The reduction in this contact load with respect to time is
shown in Fig. 15. This reduction is predominantly due to the softening of the PM MA over
time and not to the straightening out of the outer filaments. The contact load between an
outer filament and the core filament would, however, be reduced if the strand were allowed
to rotate.

SUMMARY AND CONCLUSIONS

An analytical method is presented for determining various mechanical properties of a
simple strand. These properties include the overall axial, time-dependent strain of the strand
as well as the internal time-dependent, geometric and loading variations. The internal
construction parameters of the strand are also included in this model.

The mechanical stress-·strain relationship for a linear viscoelastic solid has been
modeled by combining linear springs and dashpots into what is known as the Wiechert
model. The parameters for this time-dependent model have been determined for a specific
linear viscoelastic material, polymethyl methacrylate (PMMA), by using the Schapery
collocation method. A numerical integration technique was then introduced to solve a
convolution integral which developed, as a result of the correspondence principle of linear
viscoelasticity, from the inverse Laplace transform of the elastic solution for a simple strand.
This integration technique was combined with a modified Newton's iterative technique to
solve the time-dependent, geometric and loading relationships in a simple strand.
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